\triangle -STN: Efficient Bilevel Optimization for Neural Networks using Structured Response Jacobians (Neurips 2020)

Juhan Bae, Roger Grosse

University of Toronto, Vector Institute {*jbae, rgrosse*}@cs.toronto.edu

Hyperparameter is a bilevel optimization problem.

$$\min_{\boldsymbol{\lambda}} \mathcal{L}_V(\boldsymbol{\lambda}, \boldsymbol{\mathsf{w}}^*) \text{ subject to } \boldsymbol{\mathsf{w}}^* = \argmin_{\boldsymbol{\mathsf{w}}} \mathcal{L}_{\mathcal{T}}(\boldsymbol{\lambda}, \boldsymbol{\mathsf{w}}),$$

- $\mathcal{L}_V, \mathcal{L}_T$,: Validation, Training objectives
- λ, w : Hyperparmaeters, Parameters

Goal:

Find the optimal hyperparameters λ^* that minimizes the validation objective after training.

Introduction: Parametric Best-Response Function

Best-response function is defined as:

Idea: Learn a parametric best-response function with hypernetwork and jointly optimize hyperparameters and parameters.

$$\min_{\phi} \mathbb{E}_{\epsilon \sim p(\epsilon \mid \sigma)} \left[\mathcal{L}_{T}(\lambda + \epsilon, \mathbf{r}_{\phi}(\lambda + \epsilon)) \right], \quad \min_{\lambda} \mathcal{L}_{V}(\lambda, \mathbf{r}_{\phi}(\lambda))$$

Self-Tuning Networks (STNs) parameterize the best-response functions (with further structure imposed) as:

$$\mathsf{r}_{\phi}(\lambda) = \Phi \lambda + \phi_0,$$

Proposed:

 Δ -STNs that fix subtle pathologies in training STNs. It can optimize hyperparameters with:

- Higher accuracy
- Faster convergence
- Improved stability

△-STNs: Centered Parameterization

Advantages

- Improves the conditioning of a lower-level problem
- Fixes undesirable bilevel dynamics

Proposed parameterization:

$$\mathsf{r}_{oldsymbol{ heta}}(oldsymbol{\lambda},oldsymbol{\lambda}_0) = \Theta(oldsymbol{\lambda}-oldsymbol{\lambda}_0) + \mathsf{w}_0$$

- λ_0 : "current hyperparameters"
- **w**₀: "current weights"
- Θ: how the weights are adjusted in response to a perturbation to λ

Modify the training objectives by separating:

$$\begin{split} & \operatorname*{arg\,min}_{\mathsf{w}_0} \mathcal{L}_{\mathcal{T}}(\boldsymbol{\lambda}, \mathsf{w}_0) \\ & \operatorname{arg\,min}_{\boldsymbol{\Theta}} \mathbb{E}_{\boldsymbol{\epsilon} \sim \boldsymbol{p}(\boldsymbol{\epsilon} | \boldsymbol{\sigma})} \left[\mathcal{L}_{\mathcal{T}}(\boldsymbol{\lambda} + \boldsymbol{\epsilon}, \mathsf{r}_{\boldsymbol{\theta}}(\boldsymbol{\lambda} + \boldsymbol{\epsilon}, \boldsymbol{\lambda})) \right] \end{split}$$

Problem:

If the perturbation is large, it is difficult to approximate best-response function as linear within the region.

Fix:

Linearize the network around the current parameters $r(\lambda_0) = \mathbf{w}_0$. Directly approximates the best-response Jacobian instead of learning the full best-response function.

Experiments

Tune L_2 regularization penalty & input dropout rate.

Image Classification & Language Modelling

Tune per-layer dropouts & data augmentation hyperparameters.

Dataset	Network	RS	BO	STN	Centered STN	Δ -STN
MNIST	MLP	0.043 (0.042)	0.042 (0.043)	0.043 (0.041)	0.041 (0.039)	0.040 (0.038)
FMNIST	SimpleCNN	0.206 (0.214)	0.217 (0.215)	0.196 (0.218)	0.191 (0.212)	0.189 (0.209)
CIFAR10	AlexNet	0.631 (0.671)	0.594 (0.598)	0.474 (0.488)	0.431 (0.450)	0.425 (0.446)
	VGG16	0.566 (0.595)	0.421 (0.446)	0.330 (0.354)	0.286 (0.321)	0.272 (0.296)
	ResNet18	0.264 (0.298)	0.230 (0.267)	0.266 (0.312)	0.222 (0.258)	0.204 (0.238)
PTB	LSTM	84.81 (81.46)	72.13 (69.29)	70.67 (67.78)	69.40 (66.67)	68.63 (66.26)

Sensitivity Analysis

 Δ -STNs are more robust to hyperparameter initialization & perturbation scale.

