Training Data Attribution (TDA)
with
Influence Functions



Background: Influence Functions

> Influence functions are a classical idea from robust statistics (Hampel, 1974), which was
introduced to deep learning by Koh and Liang (2017).

» Assume we have a training dataset {zl}fv E.g., for supervised learning, z; = (:BZ-, yz)
We fit the parameters using empirical risk minimization:

N
« . .1
0" € arg min J(0,D) = arg min Z;[,(zi, 0)

» We want to understand the effect of removing (or adding) a training example z. We
parameterize the training set by z’s weight €, and see how the optimal solution varies
(i.e., the response function):

N
1
r(e) = arg min ZZ:; L(2;,0)+ ¢L(2,0)



Background: Influence Functions

—e— Response Function

» The influence of 2z on 6*is defined as the == HEEE

first-order Taylor approximation of the
response function.

» Under certain regularity conditions, this can
be computed using the Implicit Function
Theorem:

dr
To+(2) := T = ~H 'VeL(2,0%)

» Thus, we can approximate the change in
parameters as:

r(e) —0* ~ —H 'VgL(z,0")c

% Influence Estimation
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Background: Influence Functions

» Using the Chain Rule for Derivatives, we can approximate the change in the
measurable quantity of query data point =, by perturbing a weight of a training
data point z:

f(o,r(€)) — f(2,,0") = =V f(2,,0") ' H 'VgL(z,0")c

» The measurement [ is chosen based on metrics relevant to the analysis, such as
loss, margin, or log-probability.
o  When the measurement is defined as the loss, a higher absolute score
signifies a more substantial change in the query loss when the data point z is
excluded from (or added to) the training dataset.



Examples of Highly Influential Data Points
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Influence Functions: Scalability Challenges

» Given a query data point Z,, we aim to identify influential training data points. The
influence function computation process can be broken down into two stages:
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Influence Functions: Scalability Challenges

» Given a query data point Z,, we aim to identify influential training data points. The
influence function computation process can be broken down into two stages:
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Influence Functions: Scalability Challenges
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Influence Functions: Scalability Challenges
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Influence Functions: Scalability Challenges
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Influence Functions: Scalability Challenges
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» Challenge 1: IHVP computation
o The Hessian H has dimensions equal to the square of the model's parameter
count, making explicit computation infeasible for large models.
o In our past works, we have employed efficient IHVP approximation
technigues, such as LiSSA and EKFAC.
m Using EKFAC, we successfully scaled influence functions with to LLMs
with over 52 billion parameters.



Influence Functions: Scalability Challenges
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» Challenge 2: Dot product computations

o This stage requires computing the per-sample gradient for all candidate
training data points.

o For LLM pretraining, this process is at least as expensive as the cost of
pretraining the model itself (1 epoch training).
o Furthermore, this needs to be repeated for each query data point



Influence Functions: Conceptual Challenges

» The classical formulation of influence functions just described does not quite apply
to modern neural networks.
o Assumes H is invertible, while neural network training is often underspecified.
o Assumes that we have found the optimal solution 6* and TDA is performed on
this optimal solution.
o In practice, the gradients and Hessian computed using the final parameters
from a single training run (rather than the optimal solution).

» Moreover, the classic formulation of influence functions cannot incorporate the
details of the training process:
o Location of a data point of interest z appeared during training.
o Implicit bias of optimizers (e.g., the use of SGD vs. Adam).
© Learning rate schedules.
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Motivation: Gradient Caching

» Recall: Training gradients need to be recomputed for each new query.
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Motivation: Gradient Caching

» Recall: Training gradients need to be recomputed for each new query.

Vo (-8 TH VoL(,6")

I J
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1. IHVP computation
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2. Dot product computations with + Save the training gradient to
all candidate training data points reuse it for new query

» Idea: Can we save all individual training gradients in storage to avoid the recomputation
of training gradients for new query?
o  Once the training gradients are all saved on storage, we can use approximate
nearest neighbor search to compute influence scores for all training data points.



Motivation: Gradient Caching

> Problem: High memory costs due to an (extremely) high-dimensional nature of
gradients

Vof(-,0) TH 'Vol(z,0%)

Y

dim(grad) = # params

» For 8B model (e.g., Llama3-8B) with 100,000 training data points, we need 3.2 PB (or
3,200 TB) of storage to save all training gradients.
o Loading a 32 gigabyte (GB) vector for each training data point incurs a significant
disk I/0O overhead.



Gradient Projection

» Idea: One strategy to address the scalability challenge is to project the gradients onto a
low-dimensional space and compute influence scores within the subspace spanned by
the projection matrix.

(PVof(=,, 9*>>T<PHPT)‘1<5vec(zi, 0"))

Projection matrix of size k x m
(where k << m)

» Advantages:
o Low-rank projection enables writing projected gradients for all training data to disk

once and simply reading them as new query data point arrives (without costly
recomputations).
m Llama3-8B & 100,000 training data: 3.2PB — 4GB (when k = 10,000)
o Reduced the Hessian inversion cost.
o  (Future) Reduced influence analysis costs.



Gradient Projection

» Problem: The above benefits come at the cost of an additional gradient projection

o  Time complexity for computing the projected per-sample gradient: O(bkm)
m b: Batch size
m k: Projection dimension
m m: Model dimension
o  Space complexity for the projection matrix: O(km)
m E.g., the matrix size for an 8B model and the 4k projection dimension: 128TB!



Gradient Projection

» Problem: The above benefits come at the cost of an additional gradient projection

o  Time complexity for computing the projected per-sample gradient: O(bkm)
m b: Batch size
m k: Projection dimension
m m: Model dimension
o  Space complexity for the projection matrix: O(km)
m E.g., the matrix size for an 8B model and the 4k projection dimension: 128TB!

> Summary so far:
o Data influence analysis can be seen as vector similarity analysis in gradient space.

o Gradient is too high-dimensional — projection is necessary
o A projection cost is too high — ?



Efficient Gradient Projection (LoGra)

> Observation: Gradient DW in backpropagation is Kronecker-product (or 2D) structured:
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Efficient Gradient Projection (LoGra)

> Observation: Gradient DW in backpropagation is Kronecker-product (or 2D) structured:

XaDXo T
H 4 vec(DW) = Z Tit @ Dxo ¢
t=1
< = J
\\\,\ PO /// ) ) )
07 [PoDx o Impose a Kronecker-product structure on the projection matrix P
T Tr
Module W Zero«--Pg Pvec(DW)|2|(P; ® Po)vec(DW) = > (P; ® P,)(zit ® Dzoy) = $ |Pitiy ® PoDoy
pixiT io t=1 t=i
N o Time & space complexity: O(v/km) (1GB for the above example)

N
‘ o Compute projected gradients without materializing full gradients
. o Easy and efficient implementation with small add-on layers
X



Efficient Gradient Projection (LoGra)

» Vector database consists of two phases
o Vector logging/caching
o Vector similarity search
» Efficiency comparison with Llama3-8B-Instruct and the 1B-token dataset
o Baseline: EKFAC
Logging (Compute & save Hessian | grad) Compute Influence (Dot product between test & train grads)
Batch Throughput Memory Storage Train Batch Test Batch Throughput Memory
EKFAC 1 1740/419*  71/80*GB 89 GB 4 4 12.2 75 GB
LOGRA 1 3430 23GB 3.5TB 256 4 1599.6 14 GB
LOGRA 16 4696 79 GB 3.5TB 256 256 x6,500 79003.9 x5 15GB

Table 1: Memory & compute efficiency analyses for LOGRA and EKFAC. Throughput is measured
as tokens/s for logging and (train, test) pairs/s for influence computations. * EKFAC logging consists
of two subphases of KFAC fitting (left of /) and corrected eigenvalue fitting (right of /).



Software: LoglX

» Gradients are by-products of training

» Given arbitrary training codes, logix
O |ntercept gradients run = logix.init(project="myproject", config="config.yaml")
L. . run.setup({"grad": ["log", "covariance"l})
o Compute statistics (e.g., covariance) run.save(True)

o  Write gradients to disk
batch in data_loader:
» Similar to Weights & Biases {gzéiaggégif;gtgzgatch["input_ids"l)
loss.backward( )

» Compatible with various frameworks, tools, run-end()
features in the LLM ecosystem!

o Integration with HF Transformers and run.start(data_id=test_batch["input_ids"])
test_loss = model(test_batch)

PyTorch Lightning test_loss.backward( )
run.end()
test_log = run.get_log()

run.compute_influence_all(test_log)



Overall TDA System Architecture

/
( The US President

lives in Washington, D.C. j

Add & Norm

>

Add & Norm

Multi-Head
Attention

Low-Rank
Gradient Projection

Nx

:
t

User Input

\( Where does the US President live? )

Module

Test Gradient Extraction

(@ 2 D
Add & Norm

>

Add & Norm

Multi-Head
Attention

“l-... Gradient Projection

tg

Low-Rank

Nx

Train Dataset

\(K'me White House is located in Washington, D.CJ

Module

Training Log Extraction

&

Payout (
Pl bobvatalll |

Query

Vector

Database

Add

Value

0.91 [ The White House is located in )

0.85

0.53

0.01

-0.39

\
Data

Washington, D.C.

[ The US President lives in the ]

White House.

(

The first President of the US was
George Washington.

(

Albert Einstein developed general
relativity.

(

The White House is located in
Tokyo, Japan.

Data Valuation Results




Application: Data Curation

> Brittleness test
Given a specific test data point,

o ldentify top-k influential training data
o Retrain the model without the identified top-k influential data
o Measure how much the output for this test data point changes
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Application: Data Attribution

@ Generate a pitch for a new and original product.

Here's a pitch for a new and original product:
Product Name: Dream\Weaver

Description:

Dream\Weaver is a revolutionary, non-invasive brain-
computer interface (BCl) device that uses Al-powered
neuroscience to monitor and influence your brain activity

during sleep, allowing you to control and shape your dreams.

3. Dream manipulation: Using subtle audio and visual cues,
DreamWeaver can influence your brain activity to induce
lucid dreaming, improve sleep quality, and even help
overcome nightmares. ...

Ve

Most Valuable Data

Lucid dreaming is the term given to the state where the dreamer
is aware they are dreaming, and has some control over how the
dream progresses. Once considered a myth, science has
confirmed lucid dreams exist, and found some methods work to
increase the prospects people will have them.

Nevertheless, some of these require advanced equipment,
while others are far from reliable. This is unfortunate both
because people enjoy the dreams so much, and they are also
considered a potential tool for healing traumas and controlling
unhealthy behavior. Dr Denholm Aspy of the University of
Adelaide wondered whether combining techniques would bring
greater success. ...

(a) Llama3-8B-Instruct

@ To slow down global warming,

we need to reduce the amount of carbon dioxide in our
atmosphere. But that's not going to happen if fossil fuel
companies are allowed to continue polluting and burning up
more than half a trillion tons of coal every year."

The Obama administration has been working with states on
ways they can cut ssions from power plants while also
encouraging renewable energy sources like wind and solar.

)

Most Valuable Data

McCarthy has been behind some of the Obama administration’s most
aggressive air quality policies. In July 2011, the office finalized a new
Cross-State Air Pollution Rule, which requires drastic reductions in
sulfur and nitrogen oxide emissions from power plants. In December,
the agency issued new national standards for mercury and other air
toxins from coal-fired power plants that the EPA believes will prevent as
many as 11,000 deaths each year. Her office was also introduced the
tough new rules on smog-causing ozone pollution that Obama put on
hold last year. Many of these tough new rules riled Obama critics in the

oil and coal indus

\'

(b) GPT2-XL (1.5B)



Application: Data Attribution

Prompt
What is the difference between machine learning and deep learning?
Response

Machine learning and deep learning are both subfields of artificial intelligence (Al) that involve training algorithms to
perform specific tasks. The key difference between them lies in the complexity and depth of the algorithms used.

Machine Learning (ML):

Machine learning is a type of Al that enables computers to learn from data without being explicitly programmed. It involves
training algorithms on labeled data to recognize patterns and make predictions or decisions. ML algorithms can be
categorized into three types:

1. Supervised Learning: The algorithm learns from labeled data to predict outcomes.

2. Unsupervised Learning: The algorithm discovers patterns and relationships in unlabeled data.

3. Reinforcement Learning: The algorithm learns through trial and error by interacting with an environment.

Machine learning algorithms are typically shallow, meaning they have a limited number of layers (usually 1-2) and are
designed to solve specific, well-defined problems. Examples of machine learning applications include:

* Image classification (e.g., recognizing objects in images)

* Natural Language Processing (NLP) for text classification or sentiment analysis

* Recommendation systems for personalized product suggestions

Deep Learning (DL):
Deep learning is a subfield of machine learning that involves the use of neural networks with multiple layers

First Most Valuable Data

(Skip) three types mainly differ from one other in the they use to train the machine.

In Supervised Learning, the machine is trained using a certain dataset. (Skip)

In Unsupervised Learning, the machine is not trained using an initial dataset but rather it has only a function which accepts
certain arguments and after performing certain computations, an outcome is generated. (Skip)

In Reinforcement Learning, the machine is yet again not trained on any initial dataset but then as the programme executes,
it learns, formats its own mistakes and improves itself.(Skip)

Like | mentioned before, Artificial Intelligence and Machine learning go hand in hand.(Skip)



Complete Quantitative Experiments
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Training Data Attribution via
Approximate Unrolled
Differentiation

Juhan Bae, Wu Lin, Jonathan Lorraine, Roger Grosse



Recall: Influence Functions

> Influence functions estimate the optimal solution sensitivity to downweighting a
training data point.

» We discussed some conceptual issues of influence functions when applied to modern

neural networks.
o Assumes that we have found the optimal solution and TDA is performed on this
optimal solution.
o They cannot incorporate the details of the training process (e.g., the location of a
data point appeared during training).

» These conceptual issues limit the applicability of influence functions. For example, we
cannot perform TDA on:
o  Models not sufficiently trained near convergence.
o Models trained with distinct stages with different objectives or datasets such as in
continual learning and foundation models.



Unrolled Differentiation

» By contrast, unrolling-based TDA can incorporate details of the training process.
o It approximates the impact of downweighting a data point’s gradient update on
the final model parameters by backpropagating through the preceding
optimization steps

» Consider optimizing the model parameters using SGD with a fixed batch size B:
Nk <
O+1 < Ok — 1 > VoL(2Zki, Or)
i=1

» We aim to understand the effect of removing a training data point. To this end, we
parameterize the update rule as:

B
Or+1(€) < Ok(e) — % > (1 + Sri€) VoL(zri, Or(€))
=1



Unrolled Differentiation

» Similarly to other gradient-based TDA techniques, such as influence functions, we
approximate the change in parameters with its first-order Taylor approximation.

®

Zk+1 Computation Graph

() —: Training

@ == Gradlent'
Accumulation

—MVoLl(zg,0k)  Jpt1:=1— i Hpp

> The total derivative at iteration k can be expressed as —% 6, Ji1.78%, where:
_ dBp

h S —1-npH
7 a6, i Hy,
d8..,
Jpkr = dBIZ =Jp_1- - Tpt1di

gr = Vgﬁ(zm, Ok)



Unrolled Differentiation

» |In contrast to influence functions,
unrolling does not assume uniqueness or
convergence to the optimal solution.

» Furthermore, it can account for details of
the training process such as learning rate
schedules, implicit bias of optimizers, or
a data point’s position during training.

II Unrolled Approximation

\ Response Function

\
AN




Unrolled Differentiation

» Since the effect of removing a data point on any single training trajectory can be noisy,
we consider the expectation over training trajectories, where the selection of training

examples in each batch are treated as random variable:

[El@]—[E —Tf%m ——Til@[{[m ]
% | = 2 p kJkt1.78E | = 2B kJk4+1:T8k

» Problem:
o For each trajectory, the total derivative is evaluated using reverse accumulation

(backpropagation) on the computation graph. However, this is prohibitively
expensive, as it requires storing all intermediate variables for the backward pass.
©  Many Monte Carlo samples may be required to achieve accurate estimates.



SOURCE

» To derive a more efficient algorithm, we partition the training procedures into L
segments and approximate unrolling with statistical summaries thereof.

L - - D0

~
Segment 1 Segment 2 Segment 3
H, & M s H, & 7 = H; 8 73
S S3
‘% r ‘%’ ry ‘% r3
E d6r at Segment 1 E @ at Segment 2 E d6r at Segment 3
de de de

> Key Approximations:
o We approximate the Hessian and gradients distribution as stationary within each
segment (e.g., the Hessians within a segment share a common mean).
o We approximate the Hessians and gradients in different time steps as statistically
independent.



SOURCE

We can rewrite the previous expression with the segment notation:

dHT L T,—-1 Nk l+1
_Ey ¥ ak(n sg/) ing
(=1 k=T,_; 1
L /+1 Ty—1 Nk
—[E[Z<H Sw) > 7 Ok k17, 8k ]
/=1 = k=T,

~

=TIy

Note that S, := Jr,_,.1, is the Jacobian associated with each segment.



SOURCE - Part 1

» The first term can be approximated as follows:

o L _
@ E[Se =E[J7,_,.1,] = (I — 77£H€) ~ exp(—nKHy) =Sy

» The above expression can be seen as applying the function Fs(o) = exp(—n.K,0)
to each eigenvalue of the Hessian.

> Intuition:
o The value is close to zero in high-curvature directions, so training “forgets” the
component of the parameters which lie in these directions.
o Information is retained throughout the segment for low-curvature directions.



SOURCE - Part 2

» The second term can be approximated as follows:

1% 3y
@ Elr] =L [ > %&wjk—i-l:ngkJ

k=T;_1
Ty—1

> (I —nHy) T g,
k=Tp_1

(I— (I—7H)")H, g

Z\H

ZIH

(I — exp(—7K,H,))H, ' g, = Ty,
.—Fr(a)

= l

» The above expression can also be seen as applying the function F:(o) :=

to each eigenvalue of the Hessian.

1 —exp (=1 Ky0)

o



SOURCE - Part 2

1— - K
Fr(a) o exp( Te eU)

o

> Intuition: In high-curvature directions, this term approaches 1/5, whereas in low-curvature
directions, it approaches 7K, .

> Interestingly, this qualitative behavior can be captured with the function Fi,. (o) =1/(c+ 1)),
where X =17, 'K, '. This resembles influence function computations with a specific damping
term: (H,+AI)'g,

10t E

10° E
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SOURCE - Full Procedure




SOURCE - Full Procedure

i X
Segment 2 Segment 3
— & - L e L - -
Hy, 8 2 S, H; 8 13
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E g at Segment 2 E dbr at Segment 3
de de




SOURCE - Full Procedure
L - s 2 J

~
Segment 1 Segment 2 Segment 3
H, 8 M & H, g 72 & H; 8 73
So Ss3
% Ty ? r % T3
E d6r at Segment | E dol at Segment 2 E d6r at Segment 3
de de de

Putting it all together, we derived a closed-form term to approximate the expected total
derivative:



SOURCE - Implementation Details

» Given C model checkpoints saved during training,
© SOURCE organize them into L segments. The segments may represent explicit
stages of training or account for the change in Hessian and gradient
throughout training.

o  Within each segment, SOURCE estimates the stationary Hessian and gradient
by averaging them.

» We use EK-FAC parameterization to approximate the Hessian.

o The EK-FAC has an explicit eigendecomposition, which enables efficient
computation of the terms.

» Computation Costs: SOURCE requires computing the EK-FAC factors and training
gradients for each model checkpoint when performing TDA on all segments.
o Compared to EK-FAC IF, SOURCE is C times more computationally expensive.
(We use C =6 in our experiments.)

O We do not need to save all intermediate variables for unrolled differentiation!



Linear Datamodeling Score (LDS)
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Brittleness Test
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