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ABSTRACT
Performance of 6DoF pose estimation techniques from RGB/RGB-
D images has improved significantly with sophisticated deep learn-
ing frameworks. These frameworks require large-scale training data
based on real/synthetic RGB/RGB-D information. Difficulty of ob-
taining adequate training data has limited the scope of these frame-
works for ubiquitous application areas. Also, fast pose estimation
at inference time often requires high-end GPU(s) that restricts the
scope for its application in mobile hardware. To address the require-
ment of training data adequacy, we propose a novel domain adap-
tation strategy to train from textureless CAD models with synthetic
depth information only, and facilitate inferring poses from RGB im-
ages only. To allow faster inference on mobile hardware, we propose
two lightweight architectures with a trade-off between ease of train-
ing and performance required by different applications. Experiments
show comparable performance to the state-of-the-art in the challeng-
ing T-LESS dataset, with an inference time of ∼ 200 ms using CPU
on Google Pixel 2.

Index Terms— Object detection, Pose estimation, Synthetic
training, Domain Adaptation, Mobile Platform

1. INTRODUCTION

Estimating 6DoF (6-Degrees of Freedom) poses for 3D objects from
RGB and RGB-D images has been a prominent subject in literature.
Such pose estimation has been a key element in robot manipulations,
bin-picking, augmented reality applications, and various other chal-
lenging scenarios. Hence, there have been a lot of work specializing
on 6DoF pose estimation in the recent literature [1–4]. With the ad-
vent of deep learning, the accuracy benchmark has been significantly
raised, and real-time pose estimation covering a wide view-range has
been successfully obtained.

Existing literature on 6DoF pose estimation can be clearly di-
vided into a few distinct groups based on the training and inference
modality used, and the inference platform used.

• Training vs inference modality: So far, researchers have suc-
cessfully exploited the following modality combinations for
training vs inference: (1) RGB-D vs RGB-D [5, 6], (2) D
vs D [7], (3) RGB vs RGB [5, 8]. Inherent problems with
RGB-D training ground-truth generation lie in proper regis-
tration between RGB and depth, extraction of accurate 6DoF
information, and availability of high quality depth data, espe-
cially for mobile applications. On the other hand, RGB-based
methods demonstrate reduced accuracy [5] or heavy execu-
tion time [8]. Generating ground truth RGB data over a wide
view-range is also difficult. Although training based on syn-
thetic textures [3, 7, 9] has shown promise, synthetic textures

may also be hard to find, and do not resemble real texture un-
der different lighting conditions, noise, and capturing devices.
Domain adaptation between synthetic and real texture [10],
RGB and RGB-D data [10, 11] has been a topic of high in-
terest so far. While there have been attempts [12, 13] to train
a network with a synthetic CAD model, these methods still
rely on real images or depth information. To the best of our
knowledge, performance of domain adaptation from synthetic
depth information in training time to real RGB information in
inference time is yet to be explored.

• Inference platform: A majority of deep-learning based algo-
rithms have shown real-time performance, but on high-end
GPUs (e.g. Titan X). Template or feature-based methods,
such as LINEMOD, provide faster pose estimation on CPU,
but their performance reduce with increasing view-range.
Moreover, conventional template based methods suffer from
low accuracy in wide view-range due to large number of
confusing templates to match and demonstrate poor support
for large texture variations from training to inference time.

Based on the above insights, we introduce an efficient frame-
work for fast 6DoF pose estimation on mobile devices without a
need for a GPU, and trained strictly using textureless CAD models.
We show how proper domain adaptation can generalize to objects
with different textures and intensity variations. We build upon pre-
vious works on MobileNetV2 [14], Single Shot Multibox Detector
(SSD) [15]. However, the work can be generalized to other net-
work architectures supporting the object detection pipelines as well,
provided that the architecture can support mobile hardware. We pro-
pose two different architectures, based on the accuracy requirements,
acceptable interpretability and robustness, and false alarm rates al-
lowed by an application. In the first architecture (VIEWMOD), Mo-
bileNetV2 + SSD preprocesses the input image by localizing and
classifying object’s view (e.g. front, back). Then, LINEMOD esti-
mates the 6DoF pose of the object. In contrast, the second architec-
ture (BBOX9), proposes a direct regression of a 3D bounding box
surrounding the object, followed by a PnP routine [16] to estimate
the 6DoF pose.

Our contributions are as follows: (1) designing an effective do-
main adaptation method to train from textureless CAD models and
infer only from RGB domain, (2) enabling inference on a mobile
platform, or any low-end computer architecture, (3) building two ar-
chitectures with relative benefits in accuracy and interpretability. We
discuss the architectures, the rationale behind their propositions, and
relative benefits later in this work. The rest of the sections are as
follows. In section 2, we describe the training procedure and the ar-
chitectures. In section 3, we conduct experiments for benchmarking.
Finally, we conclude on section 4.



Fig. 1. Inference process for the VIEWMOD pipeline. Contour fitting is optional in the pose estimation step. The final estimated object’s
6 DoF pose is shown as red re-projected contour on the last image. Note: the BBOX9 pipeline directly provides the bounding box from the
“Deep Learning” inference block, and does not contain the LINEMOD block.

2. METHODOLOGY

In this section, we describe the synthetic data generation supporting
the unique domain adaptation, followed by a summary of the two
architectures and their respective rationale.

2.1. Synthetic Training Data Generation from 3D models

With uniformly chosen azimuth covering the 360
◦

range, elevation
covering a range of 10

◦
− 70

◦
(can be easily extended), and a dis-

tance range depending on the application and object to detect, the
3D model is projected to a 2D image on a background randomly
selected from PASCAL VOC dataset [17]. The set of 2D images
is augmented with motion blur, Gaussian blur, additive Gaussian
noise, and random lighting. As texture information between syn-
thetic CAD data and real objects may be different, we propose an
effective domain adaptation using two strategies. (1) We wrap the
CAD model before projecting to 2D images with random texture se-
lected from DT dataset [18] to simulate possible texture variations,
lighting reflections, and shadows. (2) We apply a Laplacian filter on
the final 2D image to reduce the gap between synthetic domain and
real domain. It enhances the object’s shape information such as con-
tours and inner edges, while reducing the effect of appearance and
color information. Without such filtering, the network has no way of
knowing which data from the rendered image is would be unavail-
able during inference (i.e. texture and color information), and can
easily overfit to the appearance of the rendered CAD model image.
Neural networks are very powerful in learning sophisticated regular-
ities [19], and hence, this domain adaptation technique helps in re-
ducing its power to learn such regularities that represent the domain
gap between the synthetic textureless and real images. In addition,
multiple random textures make the network more insensitive to spu-
rious texture edges. We show through our experiments in section 3
the effectiveness of this domain adaptation.

In the next subsections, we explain training processes for the two
proposed architectures. Both architectures are built on the same base
network, but differ in terms of the goal (view classification vs 3D
bounding box regression) and the loss functions used. Each archi-

tecture is trained with the synthetic 2D images, as described above.
At the inference time, the test image is always Laplacian filtered be-
fore processing it through the network.

2.2. VIEWMOD

In this architecture, we trained a 2D object detection CNN based
on TensorFlow Object Detection API [20], though the scope can be
extended to other light-weight models. Conceptually, it is composed
of two parts: a MobileNetV2 [14] feature extractor (pre-trained on
MS-COCO) to produce feature maps, and a modified SSD multi-box
detector to predict view classifications along with 2D bounding box
locations. For each anchor box in the SSD head, the model predicts
an offset value of the bounding box, and one of the 9 class labels
(8 distinct view-classes as described in the next paragraph, and one
background class). Note that we modify the original SSD structure
having two square anchor boxes with different sizes for each point
on the feature map instead of 6 anchor boxes with different aspect
ratios and sizes, since the LINEMOD algorithm in the next part of
our framework only requires the center point of the bounding box to
search for the object in a region-of-interest (ROI) around the center.

The view classification discussed above can be arbitrarily nar-
row or wide supporting different applications and object types. In
this scope, we used only 8 views (front, front-left, left, back-left,
back, back-right, right, front-right) each covering about 45

◦
azimuth

range. However, we provided a 15
◦

azimuth gap while generating
the training data for view-classification to reduce confusion on view-
range boundaries. The view-label and ROI from detection are trans-
ferred to a LINEMOD based pipeline (pre-trained for the complete
view-range with the corresponding rendered CAD model) to select
the LINEMOD shape templates corresponding to the view-label re-
turned, and matched in the ROI for the object to detect. Due to this
constrained matching, the confusion due to contour based template
matching is significantly reduced for objects with simple geometry
or in heavy clutter, while the accuracy is improved. The complete
pipeline is shown in Fig. 1. As demonstrated, we can optionally
postprocess the pose returned by LINEMOD using a contour-fitting
technique such as in [21] to yield a more accurate pose.



Fig. 2. Pose estimation results of the BBOX9. Green and yellow lines are connections among top and bottom control points respectively,
while red dot denotes the centroid of the object. Object’s category label and the confidence score are shown as white text. The CAD model
used for training is shown on the top-right corner for reference. From left to right, we show detections under texture variations and texture
clutter, object deformations from CAD model, occlusion and clutter, and symmetric objects, respectively.

2.3. BBOX9

In this architecture, we extend on [22], and modify the regression
header of the SSD to predict the 2D image coordinates of the object’s
3D bounding box directly. We use 9 3D control points to represent
the object’s 3D bounding box. During inference, we obtain 2D co-
ordinate predictions of these control points to compute the object’s 6
DoF pose using a PnP algorithm. This pose can be further improved
using a similar pose refinement strategy as discussed in Section 2.2.

We choose the 8 corners of the 3D bounding box from the 3D
model as the first 8 control points and the centroid of the 3D model
as the 9th control point. The number of control points may be greater
than 9 for different use cases or objects, or can be estimated from
the object’s uniqueness manually or automatically by analyzing the
CAD model.

For each anchor box, we use the object’s 2D bounding box in-
formation to determine whether it contains the object or not. Similar
to the original SSD [15], if the intersection over union (IoU) score of
anchor box and object’s 2D bounding box is higher than a threshold
(0.5 in our case), we assign the ground-truth to that anchor box. In
case of all anchor boxes having IoU less than the threshold for some
ground-truth objects, we assign each ground-truth object to the an-
chor box that has the highest IoU.

SupposeK is the number of objects’ categories we want to clas-
sify. Then, for each anchor box, our model predicts K probabilities
of the object’s class and 18 offset values to the anchor box’s center.

Let xpij = {1, 0} be an indicator for matching the i-th anchor
box to the j th ground-truth box of category p. In the matching strat-
egy above, we can have

∑
i x

p
ij ≥ 1. We treat matched anchor boxes

as positive examples and all others as negative ones. The overall ob-
jective loss function is a weighted sum of the localization loss (loc)
and the confidence loss (conf):

L(x, c, l, g) = 1

N
(Lconf(x, c) + αLloc(x, l, g)) (1)

where N is the number of matched anchor boxes. If N = 0, we set
the loss to 0. The localization loss is a Smooth L1 loss [23] between
the predicted box (l) and the ground-truth box (g). We regress to
offsets for the center (cx, cy) of the default bounding box (d).

In the following equation, gmj represents the mth value of the j th

ground-truth box; lmj represents the mth value of the j th predicted
box and dwi is the width of the ith default bounding box.

Lloc(x, l, g) =

N∑
i∈Pos

18∑
m=1

xkij smoothL1(l
m
i − ĝmj )

ĝmj =

{
(gmj − dcxi )/dwi , if m is odd
(gmj − d

cy
i )/dwi , otherwise

(2)

The confidence loss, similar to [15], is the softmax loss over multiple
classes confidences.

The complete pipeline for BBOX9 is a reduced version of
VIEWMOD, as already pointed out in Fig. 1. Since we can directly
infer the pose from this pipeline, we can also refine this pose using
an optional contour-fitting strategy. The unrefined output poses from
BBOX9 for a number of objects are shown in Fig. 2. Due to the do-
main adaptation, the pipeline supports objects with different texture
variations even if they are trained using a single CAD model. This is
shown in the first and second images from the left, where the CAD
models (top-right corner) do not contain any texture information.
Also, BBOX9 considers the 9 3D points independently, allowing
certain deformations in their placements. This facilitates scope for
detections using approximate CAD models as shown in the second
image from the left with two cars. The car on the right has some
deformations from the CAD model, but can still be supported by this
pipeline. Fig. 2 also shows that the pipeline supports high texture
clutter, object clutter, and occlusion.

2.4. Discussion on Two Architectures

In sections 2.2 and 2.3, we described a view classification based
architecture and an end-to-end architecture respectively. A view-
classification based deep learning architecture is a contrast to the
popular trend of the end-to-end architectures. Apart from the rea-
son to improve accuracy through the use of accurate shape templates
from LINEMOD, there are two important reasons behind such an
architecture. (1) End-to-end architectures often act like blackboxes.
They are difficult to interpret and hence, their failures cannot be ex-
plained easily. In contrast, view-classification and its failure is eas-
ier to understand, especially when an object has symmetry or simple
geometry. Following this, a shape template matching is also easy to
explain. Hence, our first architecture increases interpretability. (2)
Two independently trained pipelines (view classifier + LINEMOD)
increase the precision. If a false candidate is passed through view-
classification, it is less likely to pass through the LINEMOD pipeline



Table 1. Comparison between BB8 [8] and our methods on T-LESS [24] in terms of recall. Note that BB8 uses real RGB images while
VIEWMOD and BBOX9 only use synthetic textureless CAD models.

Scene ID: [Obj. IDs] BB8 (real training) [8] VIEWMOD (textureless training) BBOX9 (textureless training)
>10% visibility >10% visibility >70% visibility >10% visibility >70% visibility

1: [2, 30] 50.8, 55.4 64.1, 66.0 71.3, 75.8 44.0, 35.8 48.9, 40.7
2: [5, 6] 56.5, 55.6 81.0, 55.0 90.7, 62.0 75.4, 60.1 84.4, 67.8
4: [5, 26, 28] 68.7, 53.3, 40.6 68.0, 46.0, 56.7 80.7, 46.0, 64.2 65.6, 37.7, 35.1 78.9, 37.7, 39.8
5: [1, 10, 27] 39.6, 69.9, 50.1 20.8, 69.7, 50.8 21.6, 77.6, 56.7 18.7, 56.7, 24.0 19.3, 63.3, 28.9
7: [1, 3, 13] 42.0, 61.7, 64.5 42.5, 64.1, 18.5 47.4, 70.4, 21.3 41.5, 64.7, 12.4 46.2, 71.0, 14.3
7: [14, 15] 40.7, 39.7 34.1, 17.1 37.7, 20.6 28.2, 17.1 31.1, 20.6
7: [16, 17, 18] 45.7, 50.2, 83.7 33.1, 64.3, 76.7 38.5, 75.4, 86.4 21.0, 33.9, 71.8 24.4, 39.1, 81.9

Average 55.3 51.6 58.0 41.3 46.6

since the features used by the two pipelines are different. On the
other hand, an end-to-end pipeline is preferred in a situation where a
compact framework is appreciated. It lowers the burden of training
separate pipelines. Additionally, approximate CAD models can be
supported in this pipeline as shown in Fig. 2. This allows to train
a network with approximate CAD models generated using multiple-
view 3D reconstruction, or objects having flexible parts that are vi-
sually different from the CAD models. Of course, the amount of
deformation supported depends on the shape of the object used.

3. EXPERIMENTS

3.1. Evaluation Metric

We adopt the standard evaluation protocol and metric for recall:
6DoF Pose [7]. Based on this metric, if the average of 3D distances
between the estimated pose and ground-truth is less than 10% of the
object’s diameter, it is a correct detection. Symmetric objects are
evaluated in a different manner as described in [7].

To empirically evaluate the proposed framework, we choose the
T-LESS dataset [24] as it has been shown as one of the most chal-
lenging datasets in the literature. The survey paper [25] discusses
the performance of the best state-of-the-art methods on T-LESS.
From [25], it is evident that the best methods (e.g. [26]) for T-LESS
are based on point-pair features that require depth information dur-
ing inference and have very slow execution time (the fastest methods
have execution time over 2s per image). We compare our methods to
BB8 [8] as it is one of the best RGB-based inference method on the
T-LESS datasets. However, the results for BB8 are evaluated with a
visibility constraint of 10%. In real-world scenarios, specifically for
applications where background information change drastically, such
low visibility constraint can largely increase the false-alarm rate, and
hence, reduce the precision of the algorithm. Hence, while we show
the results evaluated with 10% visibility constraint, we also evalu-
ate using 70% visibility. A high visibility constraint may be more
suitable in real-world applications.

3.2. Evaluation on T-LESS Dataset

While T-LESS is an RGB-D dataset for 6D pose estimation of
texture-less objects, we only used CAD models for training and
RGB images for testing. T-LESS dataset has very challenging test
sequences with a high amount of clutter, occlusion and texture-
less objects exhibiting symmetries and mutual similarities in shape
and/or size. For comparison, we consider Scenes #1, #2, #4, #5, and
#7 in our experiments similar to BB8.

Even though, our results are not directly comparable to BB8
because we do not use real images in training, we are still able to

achieve the state-of-the-art result as shown in Table 1. With a mini-
mum 10% visibility (of the object surface in the ground truth pose),
our results are close to BB8 but not as good. The main reason is:
since the inference is highly dependent on edges and contours on the
object, such low amount of visibility may occlude important edges
crucial for a valid pose estimation and hence, affect the recall rate.
However, this is a limitation largely dependent on an object’s shape
complexity. Since our training effectively brings out shape features,
any uniqueness of an object is exploited to provide the best pose es-
timate. Hence, the evaluation results are close to that of BB8. With
70% visibility, performance of both VIEWMOD and BBOX9 signif-
icantly improves. In addition, our methods have over 84% precision
on average with 70% visibility.

3.3. Mobile Inference

To evaluate the applicability of VIEWMOD and BBOX9 on mobile
devices, we use TensorFlow Object Detection API [20] on Google
Pixel 2. All models are implemented in device CPU. VIEWMOD
takes 200ms per frame (150ms for view-classification network,
50ms for LINEMOD). Inference time for BBOX9 is similar to that
of VIEWMOD since the regression takes a bit more time in compar-
ison to view-classification. In comparison, BB8 [8] runs over 291ms
per image on a GeForce TITAN X. Note that the execution time will
vary with a change in the neural network architecture, and can be
further improved by weight pruning algorithms.

4. CONCLUSION

We introduced an efficient and user-friendly 6DoF pose estimation
framework for mobile applications. The framework introduces an ef-
fective domain adaptation strategy to use synthetic textureless CAD
models for training and facilitate inference from real RGB data.
The unique strategy adapts to a variety of CAD models irrespective
of the texture information they may have during inference. We
also propose two different architectures: one integrating neural net-
works with LINEMOD to achieve fast and accurate inference with
improved interpretability to detect failures and debug the pipeline
(VIEWMOD), while the other as an end-to-end architecture facil-
itating single training process and support for approximate CAD
models (BBOX9). Even with the constraint imposed on the training
data and the use of lightweight networks to support mobile hard-
ware, performance on T-LESS datasets show comparable results to
state-of-the-art. The two architectures proposed in the work open
up a large scope for ubiquitous 3D object pose estimation frame-
work. One future direction is to improve BBOX9 for fine pose level
accuracy, in low-end hardware.
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Manolis Lourakis, and Xenophon Zabulis, “T-LESS: An
RGB-D dataset for 6D pose estimation of texture-less objects,”
IEEE Winter Conference on Applications of Computer Vision
(WACV), 2017.

[25] Tomas Hodan, Frank Michel, Eric Brachmann, Wadim Kehl,
Anders GlentBuch, Dirk Kraft, Bertram Drost, Joel Vidal,
Stephan Ihrke, Xenophon Zabulis, et al., “Bop: benchmark
for 6d object pose estimation,” in Proceedings of the European
Conference on Computer Vision (ECCV), 2018, pp. 19–34.

[26] Bertram Drost, Markus Ulrich, Nassir Navab, and Slobodan
Ilic, “Model globally, match locally: Efficient and robust 3d
object recognition,” in Computer Vision and Pattern Recogni-
tion (CVPR), 2010 IEEE Conference on. Ieee, 2010, pp. 998–
1005.


